
FISHERIES

Overview and metadata of the Food Web Dynamics Program:

Modeling consumption for use in fish stock assessments

Brian E. Smith

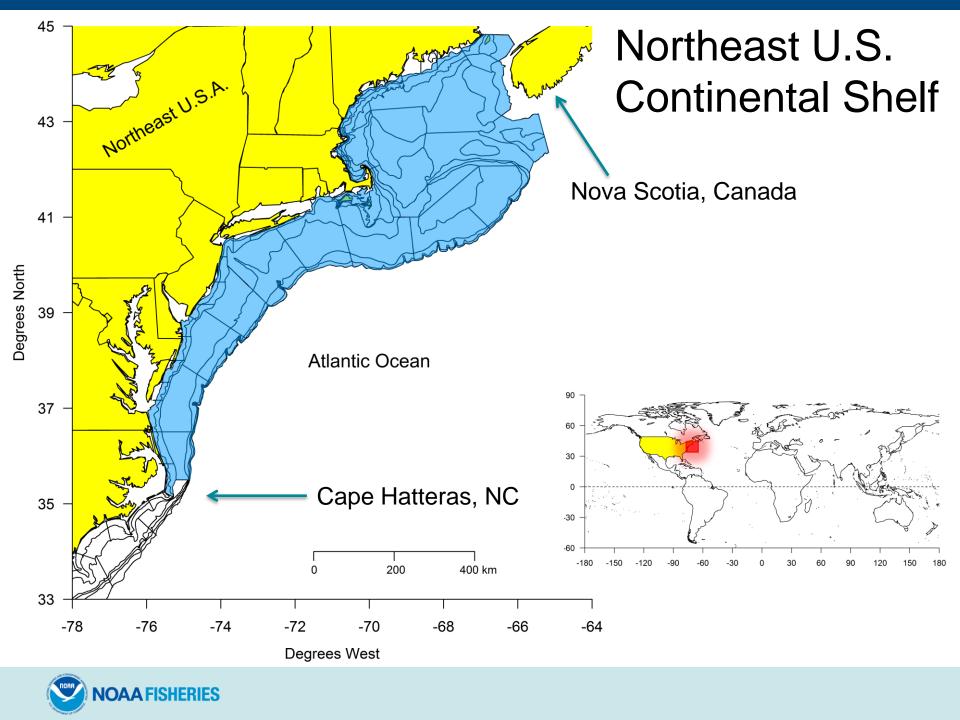
Food Web Dynamics Program, NEFSC

FWDP Program Review

- 1. Summer of 2009.
- 2. Overview and metadata, updated through 2012.
- 3. Review documentation and products available on network:

\\net\fhdata1\fhdata2\bsmith\FWDP_Review

Program Objectives


- Quantify trophic interactions of the NE U.S. continental shelf.
- Estimate predation mortality, and model species interactions that influence the status of commercial fish stocks.
- 3. Relate diet variability to changes in population- and community-level processes.

Diet Sampling

- 1. From 1973 to present, primarily cod, hakes, flounders.
- 2. From 1977 to present, expand to 195 total predators, but 31 sampled throughout time series (4000+ stomachs).
- 3. Two primary seasons: spring, fall, but winter & summer also available.
- 4. Broad geographic coverage.
 - Cape Hatteras, NC to Nova Scotia.

At-sea Biological Sampling

Length Weight

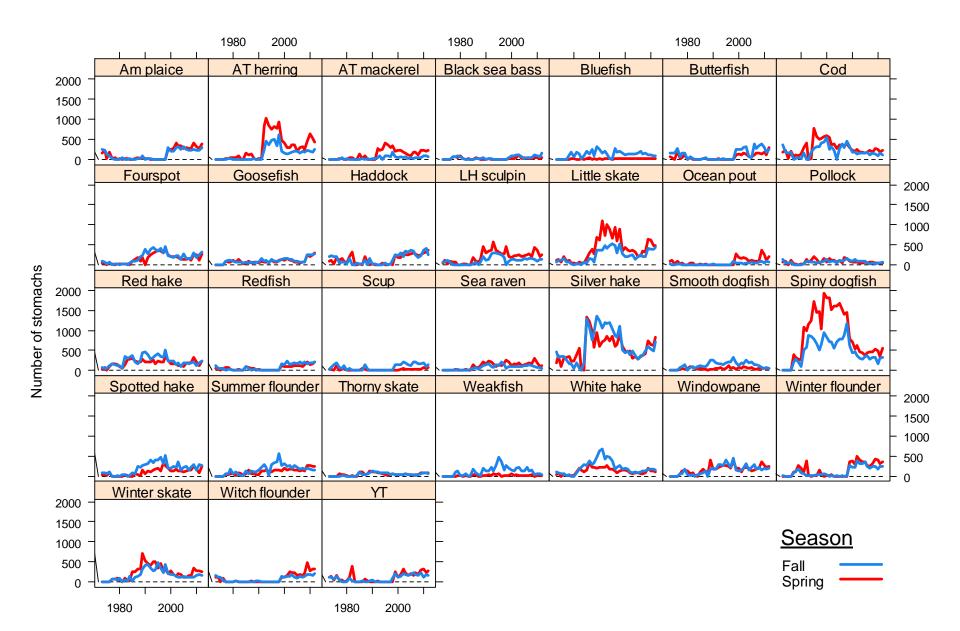
Age & Growth
Sex & Maturity

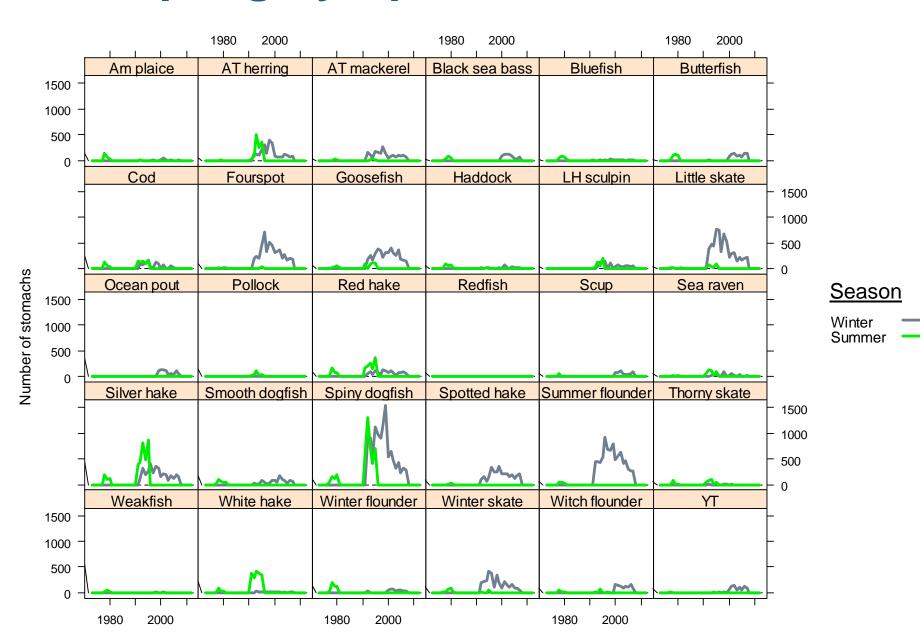
Diet Sampling

Special Sampling
Station Complete

Diet Data Collection

- 1. From a selected subset of BTS catch.
- 2. Stomachs eviscerated.
- 3. Total volume measured.
- 4. Prey taxa separated, % estimated.
- 5. Prey digestion noted (Fresh, Partial, Well).
- 6. Prey abundance estimated.
- 7. Prey lengths measured for key prey.
- 8. Prey comments (parasites, trawl feeding).


Diet Data Collection


- 1. Every 25th station, 2004-2010.
- 2. All samples that would have been processed at sea are brought back to the lab for processing under a microscope.
- 3. Total weight measured (greater resolution).
- 4. Prey taxa separated, weight by taxa, % calculated.
- 5. Prey abundance and lengths measured.

Sampling by Species and Season

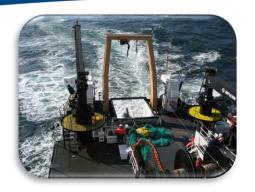
Sampling by Species and Season

Diet Data- Prey Taxa

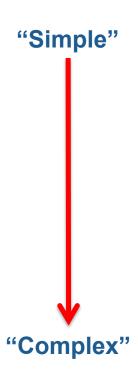
- Prey taxa are requested to be at the most resolved taxonomic level a "cutter" is comfortable reporting.
- 2. Advice is to choose a taxonomic level with most confidence.
- 3. Tradeoff of lower taxonomic resolution vs greater speed of stomach processing (and thus greater # of stomachs).

Diet Data- Prey Taxa

- Most of our acceptable taxonomic resolution levels are reasonable even for novices; usually class or order (some family) for most inverts, genus or species for most fish.
- 2. Over 1,300 distinct prey taxa in database.
- 3. Offer 2 taxonomy/prey id workshops and ~3-4 "hands on" cutting workshops per year.


Diet Data Gaps

- 1. Summer and winter seasons for all species.
- 2. Inshore areas along NE coast.
- 3. Other geographic regions of importance (e.g. canyons, closed areas).
- 4. Data specific to bottom trawl survey.
- 5. Aim to provide a broad understanding of fish trophic ecology to address many predators and prey over entire continental shelf.


NOAA FISHERIES

Modeling Consumption

- 1. Single and multispecies assessments.
- 2. Several approaches available.
- 3. Evacuation rate models.
- 4. Example application from identifying major predators to shelf/stock total consumption.

Approaches to Estimate Consumption

- 1. % BW
- 2. Daily ration
- 3. C/B (aka Q/B) ratios
- 4. Evacuation Rate models
- 5. Functional response models
- 6. Bioenergetics models

Evacuation Rate Models

- 1. Elliott & Persson (1978), Eggers (1977), modified from Bajkov (1935).
- 2. Requires stomach contents and temperature.
- 3. Models evacuation (of stomach contents) rate.
- 4. Assumes non-linear evacuation, constant consumption, and that consumption = what was evacuated.

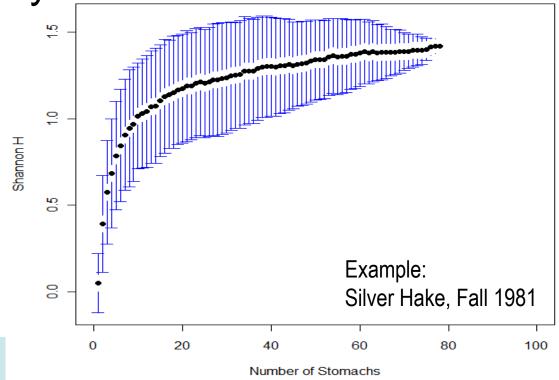
Example Application

- 1. Major Fish Predators.
- 2. Numbers of Stomachs by Season and Year.
- 3. Major Inputs and Methods for Consumption.
- 4. Variance estimates.
- 5. Prey Lengths.
- 6. Predation-Catch Overlap.

Major Fish Predators

Predator	freq total	n stomachs	%freqO	Predator	freq t	otal n stomachs	%freqO
BLUEFISH	300	5385	5.57	HADDOCK	2	12149	0.02
SPINY DOGFISH	184	69815	0.26	ATLANTIC CROAKER	2	1381	0.14
SILVER HAKE	128	53144	0.24	STRIPED SEAROBIN	2	719	0.28
SUMMER FLOUNDER	105	19254	0.55	NORTHERN SHORTFIN SQUID	2	3072	0.07
GOOSEFISH	90	12244	0.74	STRIPED BONITO	2	2	100.00
SMOOTH DOGFISH	49	8313	0.59	DUSKY SHARK	1	71	1.41
WEAKFISH	32	5481	0.58	SANDBAR SHARK	1	68	1.47
SPOTTED HAKE	27	15197	0.18	SAND TIGER	1	7	14.29
POLLOCK	26	6232	0.42	BLUNTNOSE STINGRAY	1	83	1.20
WINTER SKATE	23	19002	0.12	BARNDOOR SKATE	1	2160	0.05
FOURSPOT FLOUNDER	23	18780	0.12	OFFSHORE HAKE	1	1204	0.08
BUCKLER DORY	19	469	4.05	WINDOWPANE	1	16599	0.01
STRIPED BASS	16	1367	1.17	SCUP	1	4769	0.02
ATLANTIC COD	11	21123	0.05	GREATER AMBERJACK	1	9	11.11
LITTLE SKATE	9	31472	0.03	BANDED RUDDERFISH	1	13	7.69
WHITE HAKE	9	15698	0.06	SHORTFIN MAKO	1	1	100.00
BLACK SEA BASS	8	2948	0.27	ATLANTIC SHARPNOSE SHARK	1	221	0.45
SEA RAVEN	7	8623	0.08	INSHORE LIZARDFISH	1	42	2.38
CLEARNOSE SKATE	6	2088	0.29	LONGFIN SQUID	1	3080	0.03
ATLANTIC ANGEL SHARK	4	158	2.53	WARSAW GROUPER	1	2	50.00
RED HAKE	3	19595	0.02	COBIA	1	27	3.70
ATLANTIC MACKEREL	3	8021	0.04	KING MACKEREL	1	17	5.88

Predators with consistent butterfish predation > 1% diet composition by mass for any 5-year block of time.


Number of Stomachs by Season and Year

1. Assessing the minimum number of stomachs per season-year.

2. Absence of prey

truly zero?

3. Presence of prey?

Methods: Evacuation Rate Models

- 1. Evacuation rate: $E = \alpha e^{\beta T}$
- 2. Consumption: $C = 24 E \overline{S}$
- 3. α = 0.002 or 0.004; β = 0.115
- 4. Durbin et al. (1983) values.
- 5. Scaling consumption to season and predator population.

Major Data

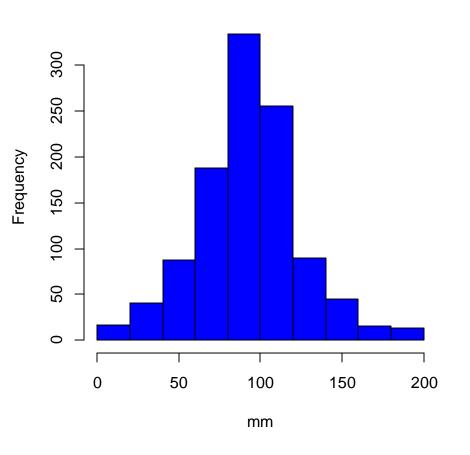
- 1. Literature values for α and β .
- 2. Ambient temperature from bottom trawl survey.
- 3. Predator total stomach amount.
 - Sum of individual prey amounts, weighted by numbers of fish per tow or stratum area.
- 4. Predator diet composition (proportion of prey).
- 5. Predator abundance.

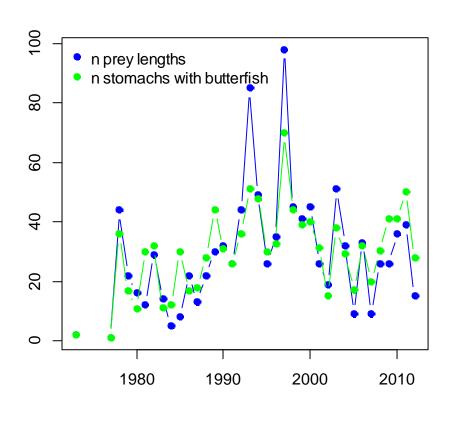
An Example Calculation

- 1. $E = \alpha e^{\beta T}$
- 2. $C = 24 E \overline{S}$, (per capita, all prey)
- 3. $C_{prey fall(spring)} = 24*E*182.5*prey_{fall(spring)}$
- 4. Annual population level consumption:

$$C_{annual} = Abundance_{annual} * (C_{prey fall} + C_{prey spring})$$

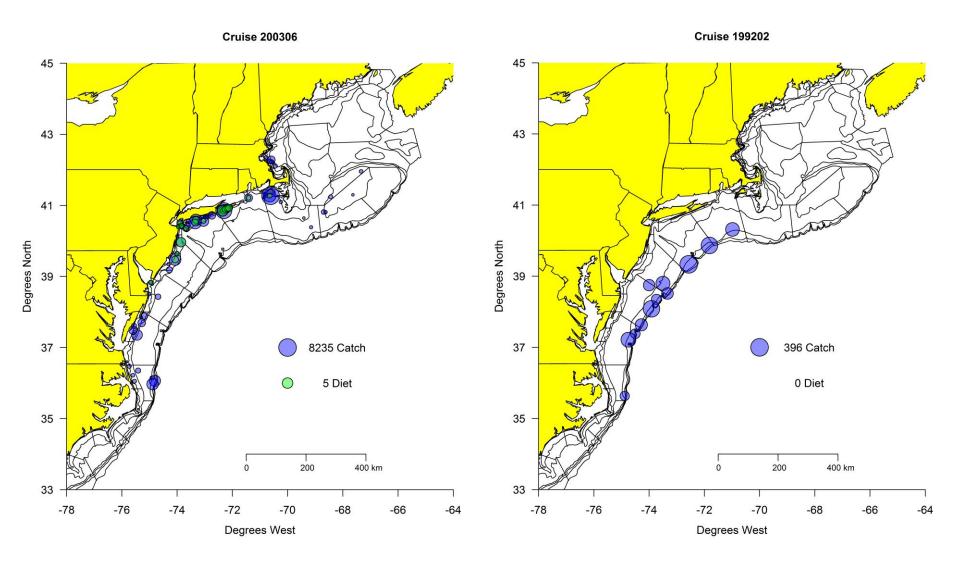
- 5. Annual total consumption:
 - C_{total} = Sum C_{annual} across predators




Variance Estimates

- Smith
- Previously left as unknown.
- Methods in place to generate variance and CV for predator consumption and total consumption.
- 3. Bootstrap consumption distributions from means and standard deviations for alpha and beta (literature), temperature, diet, and predator abundance, assuming log-normal distributions.

Other Useful Data: Prey Lengths



 1087 records aggregated across predators and time

Predation-Catch Overlap

•Catches with >100 butterfish and all stomachs with butterfish displayed

Conclusions

- 1. A lot of diet data, but how to integrate into assessments, index to scale M, other predation indices, absolute measure of removals?
- 2. Exploring diet data and estimating consumption have been TORs for assessments since 2005. Routine interest of assessment scientists to evaluate these data.

A. O'brier

Thank you!

- 1. Program review documentation and products available on network:
 - \\net\fhdata1\fhdata2\bsmith\FWDP_Review